中考網(wǎng)
全國站
快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數(shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 中考備考 > 中考復習 > 中考數(shù)學 > 正文

2019年中考數(shù)學復習指導:三角形

來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2019-04-23 17:13:53

中考真題

智能內(nèi)容

(一)三角形的重心

已知:△ABC中,D為BC中點,E為AC中點,AD與BE交于O,CO延長線交AB于F。求證:F為AB中點。

證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。

重心的幾條性質(zhì):

1.重心和三角形3個頂點組成的3個三角形面積相等。

2.重心到三角形3個頂點距離的平方和最小。

3.在平面直角坐標系中,重心的坐標是頂點坐標的算術(shù)平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3 縱坐標:(Y1+Y2+Y3)/3 豎坐標:(Z1+Z2+Z3)/3

4重心到頂點的距離與重心到對邊中點的距離之比為2:1。

5.重心是三角形內(nèi)到三邊距離之積最大的點。

如果用塞瓦定理證,則極易證三條中線交于一點。

(二)相似三角形

1相似三角形對應角相等、對應邊成比例.

2相似三角形對應高、對應角平分線、對應中線、周長的比都等于相似比(對應邊的比).

3相似三角形對應面積的比等于相似比的平方.

(三)三角形全等

全等的條件

1.兩個三角形對應的兩邊及其夾角相等,兩個三角形全等,簡稱“邊角邊”或“SAS”。

2.兩個三角形對應的兩角及其夾邊相等,兩個三角形全等,簡稱“角邊角”或“ASA”。

3.兩個三角形對應的兩角及其一角的對邊相等,兩個三角形全等,簡稱“角角邊”或“AAS”。

4.兩個三角形對應的三條邊相等,兩個三角形全等,簡稱“邊邊邊”或“SSS"。

5.兩個直角三角形對應的一條斜邊和一條直角邊相等,兩個直角三角形全等,簡稱“直角邊、斜邊”或“HL”。

注意,證明三角形全等沒有“SSA”或“邊邊角”的方法,即兩邊與其中一邊的對角相等無法證明這兩個三角形全等,但從意義上來說,直角三角形的“HL”證明等同“SSA”。

(四)內(nèi)角和

在歐幾里得的幾何體系中,三角形都是平面上的,所以三角形的內(nèi)角和為180度;三角形的一個外角等于兩個不相鄰的內(nèi)角的和;三角形的一個外角大于其他兩內(nèi)角的任一個角。

證明:根據(jù)三角形的外角和等于內(nèi)角可以證明,詳細參見《培優(yōu):走進三角形》

如何證明三角形的內(nèi)角和等于180°

方法1:將三角形的三個角撕下來拼在一起,可求出內(nèi)角和為180°。

方法2:在三角形任意一個頂點處做輔助線,可求出內(nèi)角和為180°。

   歡迎使用手機、平板等移動設備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學習社
    中考網(wǎng)官方服務號

熱點專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分數(shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分數(shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點高中

北京重點中學

上海重點中學

廣州重點中學

深圳重點中學

天津重點中學

成都重點中學

試題資料

中考壓軸題

中考模擬題

各科練習題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟南中考大事記

知識點

初中數(shù)學知識點

初中物理知識點

初中化學知識點

初中英語知識點

初中語文知識點

中考滿分作文

初中資源

初中語文

初中數(shù)學

初中英語

初中物理

初中化學

中學百科