初中三角形知識(shí)點(diǎn)
一、三角形的有關(guān)概念
1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接組成的圖形叫三角形。
三角形的特征:①不在同一直線(xiàn)上;②三條線(xiàn)段;③首尾順次相接;④三角形具有穩(wěn)定性。
2.三角形中的三條重要線(xiàn)段:角平分線(xiàn)、中線(xiàn)、高
(1)角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
(2)中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
說(shuō)明:①三角形的角平分線(xiàn)、中線(xiàn)、高都是線(xiàn)段;
、谌切蔚慕瞧椒志(xiàn)、中線(xiàn)都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長(zhǎng)線(xiàn))相交于一點(diǎn)。
二、三角形的邊和角
三邊關(guān)系:三角形中任意兩邊之和大于第三邊。
由三邊關(guān)系可以推出:三角形任意兩邊之差小于第三邊。
三、三角形內(nèi)、外角的關(guān)系
1.三角形的內(nèi)角和等于180°。
2.直角三角形的兩個(gè)銳角互余。
3.三角形的一外角等于和它不相鄰的兩個(gè)內(nèi)角之和,三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
4.三角形的外角和為360°。
四、等腰三角形與直角三角形
1.等腰三角形:有兩條邊相等的三角形稱(chēng)為等腰三角形,相等的兩邊叫做等腰三角形的腰,三條邊都相等的三角形叫做等邊三角形(或正三角形)。
說(shuō)明:等邊三角形是等腰三角形的特殊情況。
2.直角三角形:有一個(gè)角是直角的三角形是直角三角形,它的兩個(gè)銳角互余。
五、三角形的分類(lèi):
六、三角形的面積:
1.一般計(jì)算公式;
2.性質(zhì):等底等高的三角形面積相等。
七、初中三角形中線(xiàn)定理_
中線(xiàn)定理又稱(chēng)阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線(xiàn)長(zhǎng)度關(guān)系。
定理內(nèi)容:三角形一條中線(xiàn)兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線(xiàn)平方和的2倍。
中線(xiàn)的定義
任何三角形都有三條中線(xiàn),而且這三條中線(xiàn)都在三角形的內(nèi)部,并交于一點(diǎn)
由定義可知,三角形的中線(xiàn)是一條線(xiàn)段。
由于三角形有三條邊,所以一個(gè)三角形有三條中線(xiàn)。
且三條中線(xiàn)交于一點(diǎn)。這點(diǎn)稱(chēng)為三角形的重心。
每條三角形中線(xiàn)分得的兩個(gè)三角形面積相等。
八、三角形的內(nèi)角和
在同一平面內(nèi),由一些不在同一條直線(xiàn)上的線(xiàn)段首位順次相接所圍成的封閉圖形叫做多邊形.組成多變形的那些線(xiàn)段叫做多邊形的邊.相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).多變形相鄰兩邊所夾的角叫做多邊形的內(nèi)角,簡(jiǎn)稱(chēng)多邊形的角.多變形的角的一邊與另一邊的反向延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角.
三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角和等于180
在原來(lái)圖形上添畫(huà)的線(xiàn)叫做輔助線(xiàn)
依據(jù)三角形內(nèi)角的特征,對(duì)三角形進(jìn)行分類(lèi):三個(gè)角都是銳角的三角形叫做銳角三角形;有一個(gè)角是直角的三角形叫做直角三角形;有一個(gè)角是鈍角的三角形叫做鈍角三角形;銳角三角形和鈍角三角形統(tǒng)稱(chēng)斜三角形.
在直角三角形中,夾直角的兩邊叫做直角邊,直角的對(duì)邊叫做斜邊.
九、三角形公式
解斜三角形: 在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c. 則有
(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R為三角形外接圓半徑)
(2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其實(shí)是余弦定理的一種特殊情況。
(3)余弦定理變形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab
斜三角形的解法: 已知條件 定理應(yīng)用 一般解法 一邊和兩角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b與c,在有解時(shí) 有一解。 兩邊和夾角 (如a、b、c) 余弦定理 由余弦定理求第三邊c,由正弦定理求出小邊所對(duì)的角,再 由A+B+C=180˙求出另一角,在有解時(shí)有一解。
三邊 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解時(shí)只有一解。 兩邊和其中一邊的對(duì)角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C邊,可有兩解、一解或無(wú)解。
勾股定理(畢達(dá)哥拉斯定理) 內(nèi)容:在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方。 幾何語(yǔ)言:若△ABC滿(mǎn)足∠ABC=90°,則AB2+BC2=AC2 勾股定理的逆定理也成立,即兩條邊長(zhǎng)的平方之和等于第三邊長(zhǎng)的平方,則這個(gè)三角形是直角三角形 幾何語(yǔ)言:若△ABC滿(mǎn)足,則∠ABC=90°。
射影定理(歐幾里得定理) 內(nèi)容:在任何一個(gè)直角三角形中,作出斜邊上的高,則斜邊上的高的平方等于高所在斜邊上的點(diǎn)到不是兩直角邊垂足的另外兩頂點(diǎn)的線(xiàn)段長(zhǎng)度的乘積。
幾何語(yǔ)言:若△ABC滿(mǎn)足∠ABC=90°,作BD⊥AC,則BD2=AD×DC 射影定理的拓展:若△ABC滿(mǎn)足∠ABC=90°,作BD⊥AC, (1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD
正弦定理內(nèi)容:在任何一個(gè)三角形中,每個(gè)角的正弦與對(duì)邊之比等于三角形面積的兩倍與三邊邊長(zhǎng)和的乘積之比 幾何語(yǔ)言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 結(jié)合三角形面積公式,可以變形為a/sinA=b/sinB=c/sinC=2R(R是外接圓半徑)
余弦定理 內(nèi)容:在任何一個(gè)三角形中,任意一邊的平方等于另外兩邊的平方和減去這兩邊的2倍乘以它們夾角的余弦 幾何語(yǔ)言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以變形為:cosA=(b2+c2-a2)÷2bc忽略構(gòu)成三角形的條件。
常見(jiàn)考法
(1)考查三角形的性質(zhì)和概念;(2)根據(jù)三角形內(nèi)角和以及內(nèi)、外角關(guān)系,給出已知兩角,來(lái)求第三個(gè)角;(3)根據(jù)三角形內(nèi)、外角的關(guān)系,比較兩角大小的;(4)利用三邊關(guān)系判斷三條線(xiàn)段能否組成三角形或給出三角形的兩邊長(zhǎng),來(lái)確定第三邊長(zhǎng)的取值范圍,亦或證明線(xiàn)段之間的不等關(guān)系。
新初三快掃碼關(guān)注
中考網(wǎng)微信公眾號(hào)
每日推送學(xué)習(xí)技巧,學(xué)科知識(shí)點(diǎn)
助你迎接2020年中考!
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪(fǎng)問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看