來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2020-01-19 18:29:06
8、直角三角形定理
定理:在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
9、多邊形內(nèi)角和定理
定理:四邊形的內(nèi)角和等于360°;四邊形的外角和等于360°
多邊形內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)×180°
推論:任意多邊的外角和等于360°
10、平行四邊形定理
平行四邊形性質(zhì)定理:
1.平行四邊形的對角相等
2.平行四邊形的對邊相等
3.平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形
2.兩組對邊分別相等的四邊形是平行四邊形
3.對角線互相平分的四邊形是平行四邊形
4.一組對邊平行相等的四邊形是平行四邊形
11、矩形定理
矩形性質(zhì)定理1:矩形的四個角都是直角
矩形性質(zhì)定理2:矩形的對角線相等
矩形判定定理1:有三個角是直角的四邊形是矩形
矩形判定定理2:對角線相等的平行四邊形是矩形
12、菱形定理
菱形性質(zhì)定理1:菱形的四條邊都相等
菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理1:四邊都相等的四邊形是菱形
菱形判定定理2:對角線互相垂直的平行四邊形是菱形
13、正方形定理
正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等
正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
14、中心對稱定理
定理1:關于中心對稱的兩個圖形是全等的
定理2:關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
15、等腰梯形性質(zhì)定理
等腰梯形性質(zhì)定理:
1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
16、中位線定理
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半:L=(a+b)÷2S=L×h
17、相似三角形定理
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似(ASA)
2.兩邊對應成比例且夾角相等,兩三角形相似(SAS)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
性質(zhì)定理:
1.相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
2.相似三角形周長的比等于相似比
3.相似三角形面積的比等于相似比的平方
18、三角函數(shù)定理
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看