中考網(wǎng)
全國站
快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數(shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 知識點庫 > 初中數(shù)學知識點 > 二次函數(shù) > 正文

2021年中考數(shù)學知識點之:二次函數(shù)與圖形變換

來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)編輯 2021-05-22 20:09:27

中考真題

智能內(nèi)容

  中考網(wǎng)整理了關(guān)于2021年中考數(shù)學知識點之:二次函數(shù)與圖形變換,希望對同學們有所幫助,僅供參考。

  二次函數(shù)與圖形變換

  二次函數(shù)是初中數(shù)學中最精彩的內(nèi)容之一,也是歷年中考的熱點和難點。其中,關(guān)于函數(shù)解析式的確定是非常重要的題型。而今年的中考正是面臨新課程改革,教材的內(nèi)容和學習要求變化較大,其中一個突出的變化就是強化了對圖形變換的要求,那么二次函數(shù)和圖形變化的結(jié)合,將是同學們在學習中不可忽視的內(nèi)容。


  圖形變換包含平移、軸對稱、旋轉(zhuǎn)、位似四種變換,那么二次函數(shù)的圖像在其圖形變化(平移、軸對稱、旋轉(zhuǎn))的過程中,如何完成解析式的確定呢?解決此類問題的方法很多,關(guān)鍵在于解決問題的著眼點。筆者認為最好的方法是用頂點式的方法。因此解題時,先將二次函數(shù)解析式化為頂點式,確定其頂點坐標,再根據(jù)具體圖形變換的特點,確定變化后新的頂點坐標及a值。


  1、平移:二次函數(shù)圖像經(jīng)過平移變換不會改變圖形的形狀和開口方向,因此a值不變。頂點位置將會隨著整個圖像的平移而變化,因此只要按照點的移動規(guī)律,求出新的頂點坐標即可確定其解析式。


  例1.將二次函數(shù)y=x2-2x-3的圖像向上平移2個單位,再向右平移1個單位,得到的新的圖像解析式為_____


  分析:將y=x2-2x-3化為頂點式y(tǒng)=(x-1)2-4,a值為1,頂點坐標為(1,-4),將其圖像向上平移2個單位,再向右平移1個單位,那么頂點也會相應(yīng)移動,其坐標為(2,-2),由于平移不改變二次函數(shù)的圖像的形狀和開口方向,因此a值不變,故平移后的解析式為y=(x-2)2-2。


  2、軸對稱:此圖形變換包括x軸對稱和關(guān)于y軸對稱兩種方式。


  二次函數(shù)圖像關(guān)于x軸對稱的圖像,其形狀不變,但開口方向相反,因此a值為原來的相反數(shù)。頂點位置改變,只要根據(jù)關(guān)于x軸對稱的點的坐標特征求出新的頂點坐標,即可確定其解析式。


  二次函數(shù)圖像關(guān)于y軸對稱的圖像,其形狀和開口方向都不變,因此a值不變。但是頂點位置會改變,只要根據(jù)關(guān)于y軸對稱的點的坐標特征求出新的頂點坐標,即可確定其解析式。


  例2.求拋物線y=x2-2x-3關(guān)于x軸以及y軸對稱的拋物線的解析式。


  分析:y=x2-2x-3=(x-1)2-4,a值為1,其頂點坐標為(1,-4),若關(guān)于x軸對稱,a值為-1,新的頂點坐標為(1,4),故解析式為y=-(x-1)2+4;若關(guān)于y軸對稱,a值仍為1,新的頂點坐標為(-1,-4),因此解析式為y=(x+1)2-4。


  3、旋轉(zhuǎn):主要是指以二次函數(shù)圖像的頂點為旋轉(zhuǎn)中心,旋轉(zhuǎn)角為180°的圖像變換,此類旋轉(zhuǎn),不會改變二次函數(shù)的圖像形狀,開口方向相反,因此a值會為原來的相反數(shù),但頂點坐標不變,故很容易求其解析式。


  例3.將拋物線y=x2-2x+3繞其頂點旋轉(zhuǎn)180°,則所得的拋物線的函數(shù)解析式為________


  分析:y=x2-2x+3=(x-1)2+2中,a值為1,頂點坐標為(1,2),拋物線繞其頂點旋轉(zhuǎn)180°后,a值為-1,頂點坐標不變,故解析式為y=-(x-1)2+2。


  以上內(nèi)容只是向同學們提供了解決此類問題的一種思考方法和解題思路,同學們不妨試一試。

 

  相關(guān)推薦:

  2021年全國各省市中考報名時間匯總

  2021年全國各地中考體育考試方案匯總

  2021年全國各省市中考時間匯總

 

關(guān)注中考網(wǎng)微信公眾號 

每日推送中考知識點,應(yīng)試技巧

助你迎接2021年中考!

   歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學習社
    中考網(wǎng)官方服務(wù)號

熱點專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分數(shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分數(shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點高中

北京重點中學

上海重點中學

廣州重點中學

深圳重點中學

天津重點中學

成都重點中學

試題資料

中考壓軸題

中考模擬題

各科練習題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟南中考大事記

知識點

初中數(shù)學知識點

初中物理知識點

初中化學知識點

初中英語知識點

初中語文知識點

中考滿分作文

初中資源

初中語文

初中數(shù)學

初中英語

初中物理

初中化學

中學百科