來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)編輯 2021-05-22 20:09:27
中考網(wǎng)整理了關(guān)于2021年中考數(shù)學知識點之:二次函數(shù)與圖形變換,希望對同學們有所幫助,僅供參考。
二次函數(shù)與圖形變換
二次函數(shù)是初中數(shù)學中最精彩的內(nèi)容之一,也是歷年中考的熱點和難點。其中,關(guān)于函數(shù)解析式的確定是非常重要的題型。而今年的中考正是面臨新課程改革,教材的內(nèi)容和學習要求變化較大,其中一個突出的變化就是強化了對圖形變換的要求,那么二次函數(shù)和圖形變化的結(jié)合,將是同學們在學習中不可忽視的內(nèi)容。
圖形變換包含平移、軸對稱、旋轉(zhuǎn)、位似四種變換,那么二次函數(shù)的圖像在其圖形變化(平移、軸對稱、旋轉(zhuǎn))的過程中,如何完成解析式的確定呢?解決此類問題的方法很多,關(guān)鍵在于解決問題的著眼點。筆者認為最好的方法是用頂點式的方法。因此解題時,先將二次函數(shù)解析式化為頂點式,確定其頂點坐標,再根據(jù)具體圖形變換的特點,確定變化后新的頂點坐標及a值。
1、平移:二次函數(shù)圖像經(jīng)過平移變換不會改變圖形的形狀和開口方向,因此a值不變。頂點位置將會隨著整個圖像的平移而變化,因此只要按照點的移動規(guī)律,求出新的頂點坐標即可確定其解析式。
例1.將二次函數(shù)y=x2-2x-3的圖像向上平移2個單位,再向右平移1個單位,得到的新的圖像解析式為_____
分析:將y=x2-2x-3化為頂點式y(tǒng)=(x-1)2-4,a值為1,頂點坐標為(1,-4),將其圖像向上平移2個單位,再向右平移1個單位,那么頂點也會相應(yīng)移動,其坐標為(2,-2),由于平移不改變二次函數(shù)的圖像的形狀和開口方向,因此a值不變,故平移后的解析式為y=(x-2)2-2。
2、軸對稱:此圖形變換包括x軸對稱和關(guān)于y軸對稱兩種方式。
二次函數(shù)圖像關(guān)于x軸對稱的圖像,其形狀不變,但開口方向相反,因此a值為原來的相反數(shù)。頂點位置改變,只要根據(jù)關(guān)于x軸對稱的點的坐標特征求出新的頂點坐標,即可確定其解析式。
二次函數(shù)圖像關(guān)于y軸對稱的圖像,其形狀和開口方向都不變,因此a值不變。但是頂點位置會改變,只要根據(jù)關(guān)于y軸對稱的點的坐標特征求出新的頂點坐標,即可確定其解析式。
例2.求拋物線y=x2-2x-3關(guān)于x軸以及y軸對稱的拋物線的解析式。
分析:y=x2-2x-3=(x-1)2-4,a值為1,其頂點坐標為(1,-4),若關(guān)于x軸對稱,a值為-1,新的頂點坐標為(1,4),故解析式為y=-(x-1)2+4;若關(guān)于y軸對稱,a值仍為1,新的頂點坐標為(-1,-4),因此解析式為y=(x+1)2-4。
3、旋轉(zhuǎn):主要是指以二次函數(shù)圖像的頂點為旋轉(zhuǎn)中心,旋轉(zhuǎn)角為180°的圖像變換,此類旋轉(zhuǎn),不會改變二次函數(shù)的圖像形狀,開口方向相反,因此a值會為原來的相反數(shù),但頂點坐標不變,故很容易求其解析式。
例3.將拋物線y=x2-2x+3繞其頂點旋轉(zhuǎn)180°,則所得的拋物線的函數(shù)解析式為________
分析:y=x2-2x+3=(x-1)2+2中,a值為1,頂點坐標為(1,2),拋物線繞其頂點旋轉(zhuǎn)180°后,a值為-1,頂點坐標不變,故解析式為y=-(x-1)2+2。
以上內(nèi)容只是向同學們提供了解決此類問題的一種思考方法和解題思路,同學們不妨試一試。
相關(guān)推薦:
2021年全國各省市中考報名時間匯總
2021年全國各地中考體育考試方案匯總
2021年全國各省市中考時間匯總
關(guān)注中考網(wǎng)微信公眾號
每日推送中考知識點,應(yīng)試技巧
助你迎接2021年中考!
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看