來源:網(wǎng)絡(luò)資源 2021-11-12 20:25:29
有理數(shù)的加法運算
同號相加一邊倒;
異號相加“大”減“小”,
符號跟著大的跑;
絕對值相等“零”正好。
[注]“大”減“小”是指絕對值的大小。
合并同類項
合并同類項,法則不能忘,
只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則
去括號、添括號,關(guān)鍵看符號,括
號前面是正號,去、添括號不變號,
括號前面是負(fù)號,去、添括號都變號。
一元一次方程
已知未知要分離,分離方法就是移,
加減移項要變號,乘除移了要顛倒。
恒等變換
兩個數(shù)字來相減,互換位置最常見,
正負(fù)只看其指數(shù),奇數(shù)變號偶不變。
(a-b)^2n+1=-(b - a)^2n+1,
(a-b)^2n=(b - a)^2n
平方差公式
平方差公式有兩項,符號相反切記牢,
首加尾乘首減尾,莫與完全公式相混淆。
完全平方
完全平方有三項,首尾符號是同鄉(xiāng),
首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央。
因式分解
一提(公因式)二套(公式)三分組,
細(xì)看幾項不離譜,
兩項只用平方差,
三項十字相乘法,
陣法熟練不馬虎,
四項仔細(xì)看清楚,
若有三個平方數(shù)(項),
就用一三來分組,
否則二二去分組,
五項、六項更多項,
二三、三三試分組,
以上若都行不通,
拆項、添項看清楚。
“代入”口決
挖去字母換上數(shù)(式),
數(shù)字、字母都保留;
換上分?jǐn)?shù)或負(fù)數(shù),
給它帶上小括弧,
原括弧內(nèi)出(現(xiàn))括弧,
逐級向下變括弧(小—中—大)。
單項式運算
加、減、乘、除、乘(開)方,
三級運算分得清,
系數(shù)進行同級(運)算,
指數(shù)運算降級(進)行。
解一元一次不等式的步驟
去分母、去括號,
移項時候要變號,
同類項、合并好,
再把系數(shù)來除掉,
兩邊除(以)負(fù)數(shù)時,
不等號改向別忘了。
一元一次不等式組解集
大大取較大,小小取較小,
小大,大小取中間,
大小,小大無處找。
不等式的解集
大(魚)于(吃)取兩邊,
小(魚)于(吃)取中間。
分式混合運算法則
分式四則運算,順序乘除加減,
乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,
分子分母相約,然后再行運算;
加減分母需同,分母化積關(guān)鍵;
找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟
同乘最簡公分母,
化成整式寫清楚,
求得解后須驗根,
原(根)留、增(根)舍別含糊。
最簡根式的條件
最簡根式三條件,
號內(nèi)不把分母含,
冪指(數(shù))根指(數(shù))要互質(zhì),
冪指比根指小一點。
特殊點坐標(biāo)特征
坐標(biāo)平面點(x,y),
橫在前來縱在后;
(+,+),(-,+),(-,-)和(+,-),
四個象限分前后;
X軸上y為0,x為0在Y軸。
象限角的平分線
象限角的平分線,坐標(biāo)特征有特點,
一、三橫縱都相等,二、四橫縱卻相反。
平行某軸的直線
平行某軸的直線,點的坐標(biāo)有講究,
直線平行X軸,縱坐標(biāo)相等橫不同;
直線平行于Y軸,點的橫坐標(biāo)仍照舊。
對稱點坐標(biāo)
對稱點坐標(biāo)要記牢,
相反數(shù)位置莫混淆,
X軸對稱y相反,
Y軸對稱,x前面添負(fù)號;
原點對稱最好記,
橫縱坐標(biāo)變符號。
自變量的取值范圍
分式分母不為零,
偶次根下負(fù)不行;
零次冪底數(shù)不為零,
整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律
若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面的口訣:
左右平移在括號,上下平移在末稍,
左正右負(fù)須牢記,上正下負(fù)錯不了
一次函數(shù)圖像與性質(zhì)口訣
一次函數(shù)是直線,圖像經(jīng)過仨象限;
正比例函數(shù)更簡單,經(jīng)過原點一直線;
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與Y軸來相見,
k為正來右上斜,x增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點, 它們確定圖象現(xiàn);
開口、大小由a斷,c與Y軸來相見,
b的符號較特別,符號與a相關(guān)聯(lián);
頂點位置先找見,Y軸作為參考線,
左同右異中為0,牢記心中莫混亂;
頂點坐標(biāo)最重要,一般式配方它就現(xiàn),
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。
若求對稱軸位置, 符號反,
一般、頂點、交點式,不同表達能互換。
反比例函數(shù)圖像與性質(zhì)口訣
反比例函數(shù)有特點,
雙曲線相背離的遠(yuǎn);
k為正,圖在一、三(象)限,
k為負(fù),圖在二、四(象)限;
圖在一、三函數(shù)減,
兩個分支分別減。
圖在二、四正相反,
兩個分支分別添;
線越長越近軸,
永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義
初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:
一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。
正:正弦或正切,對:對邊即正是對;
余:余弦或余弦,鄰:鄰邊即余是鄰;
切是直角邊。
三角函數(shù)的增減性
正增余減。
特殊三角函數(shù)值記憶
首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
平行四邊形的判定
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“”現(xiàn);
延長兩腰交一點,“”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
添加輔助線歌
輔助線,怎么添?找出規(guī)律是關(guān)鍵,
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連,
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看